B.Sc. $3^{\text {rd }}$ Semester(Honours) Examinations, 2020-21

PHYSICS

Course ID: 32411
Course Code : SH/PHS/ 301/C-5
Course Title: Mathematical physics - II
Time: 1hour 15 minutes
Full Marks: 25

The figures in the margin indicate full marks

Candidates are required to give their answers in their own words as far as practicable.

Section - I

1. Answer any five of the following questions:
a) Find the roots of $(-1+i)^{\frac{1}{3}}$
b) Write down Cauchy's Integral Theorem.
c) Justify the matrix $\mathrm{A}=\left[\begin{array}{ccc}3 & 4-i & -2 \\ 4+i & 3 & i \\ -2 & -i & 0\end{array}\right]$ is Hermitian or not.
d) Prove that, $\frac{1}{\sqrt{3}}\left[\begin{array}{cc}1 & 1+i \\ 1-i & -1\end{array}\right]$ is unitary
e) What is the value of integral $\int_{-\alpha}^{\alpha} x \delta(x-4) d x$?
f) Write down Hamilton's canonical equations.
g) What is similarity transformation?
h) From a pack of 52 cards, one is drawn at random. Find the probability of getting a king.

Section - II

Answer any two of the following questions:
2. Show that the function $u(x, y)=4 x y-3 x+2$ is harmonic. Construct the corresponding analytic function $f(z)=u(x, y)+i v(x, y)$
3. a) If $\mathrm{A}=\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$, Find A^{-1}
b) Show that the matrix $\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & i \\ -i & -1\end{array}\right] \quad$ is unitary.
4.

Consider the system shown in figure which two equal masses m are connected by springs having spring constant k and the masses are free to slide on a frictionless plane and the end of the spring are connected in the wall.

Find the Lagrangian of the system and hence equation of motion
5. a) Explain Binomial theorem of probability.
b) In a office of 25 people, 3 people live within 5 kms . of the office, 15 between $5-10 \mathrm{kms}$ and the rest beyond 10 kms .
i) what is the probability that a person works beyond 10 kms of the office?
ii) what is the probability that a person works within 10 kms of the office?
iii) what is the probability that a person works within 5 kms of the office?

Section - III

Answer any one of the following questions:

6. a) Evaluate $\oint \frac{d z}{z-a}$ over any simple closed curve C , for $\mathrm{z}=\mathrm{a}$, inside and outside C .
b) State the residue theorem.
c) show that $\int_{0}^{2 \pi} \frac{\cos 3 \theta}{5-4 \cos \theta} \mathrm{~d} \theta=\frac{5}{12}$
7.a) Given the Lagrangian $\mathrm{L}=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)-\mathrm{V}(\mathrm{r})$. Find the Hamiltonian and hence the equation of motion ; symbols have their usual meaning.
b) Find the eigen value and eigen vector of the matrix $A=\left[\begin{array}{ccc}2 & -2 & 0 \\ -2 & 1 & -2 \\ 0 & -2 & 0\end{array}\right]$
